Since the display contains only minimal LEDs and weight is a factor, resolution can be improved simply by a faster control circuit and finer pitched bulbs. With LEDs spaced closer together and with the ability to control them more precisely, the designer can create images with better quality without resorting to spending extra money. Some have taken this concept to the extreme and produced full HD quality video using only about a 1000 emitters. Since rotation speed directly affects picture quality, it is important to minimize system components and mass. An aerodynamic design or placing the device in a vacuumed chamber can greatly improve refresh rates.
Rather than rotating the light source, a specially angled type mirror can be used to automatically reflect the light source into scanning rows upon a projection screen. The motor simply spins this 7 sided cylindrical mirror (each side having a slightly different tilt). When a stationary mounted laser is bounced off the rotating mirror a raster pattern is produced on the screen. By keeping track of rotational indexes and other timing information, a processor can determine whether to turn the laser on or off at extremely high speeds. The end result is

A still better approach is to use a flat mirror on a double axis, spring suspended mount. Electromagnets can force the mirror into a scanning pattern where rows are generated more often than columns. Very similar to a television's electron beam control, but far superior in its ability to project images beyond a vacuum chamber and zero requirement for a phosphorescent doped screen, a mechanically scanned laser projector can generate images of any size, with any resolution, and is only limited by the intensity of the laser's beam and the reaction speed of the electronics.
No comments:
Post a Comment